Spatio-temporal feature selection for black-box weather forecasting

نویسنده

  • Zahra Karevan
چکیده

In this paper, a data-driven modeling technique is proposed for temperature forecasting. Due to the high dimensionality, LASSO is used as feature selection approach. Considering spatio-temporal structure of the weather dataset, first LASSO is applied in a spatial and temporal scenario, independently. Next, a feature is included in the model if it is selected by both. Finally, Least Squares Support Vector Machines (LSSVM) regression is used to learn the model. The experimental results show that spatio-temporal LASSO improves the performance and is competitive with the state-of-the-art methods. As a case study, the prediction of the temperature in Brussels is considered.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Crime Forecasting Using Spatio-temporal Pattern with Ensemble Learning

Crime forecasting is notoriously difficult. A crime incident is a multi-dimensional complex phenomenon that is closely associated with temporal, spatial, societal, and ecological factors. In an attempt to utilize all these factors in crime pattern formulation, we propose a new feature construction and feature selection framework for crime forecasting. A new concept of multi-dimensional feature ...

متن کامل

Short-Term Forecasting of Passenger Demand under On-Demand Ride Services: A Spatio-Temporal Deep Learning Approach

Short-term passenger demand forecasting is of great importance to the ondemand ride service platform, which can incentivize vacant cars moving from over-supply regions to over-demand regions. The spatial dependences, temporal dependences, and exogenous dependences need to be considered simultaneously, however, which makes short-term passenger demand forecasting challenging. We propose a novel d...

متن کامل

Spatio-temporal analysis of diurnal air temperature parameterization in Weather Stations over Iran

     Diurnal air temperature modeling is a beneficial experimental and mathematical approach which can be used in many fields related to Geosciences. The modeling and spatio-temporal analysis of air Diurnal Temperature Cycle (DTC) was conducted using data obtained from 105 synoptic stations in Iran during the years 2013-2014 for the first time; the key variable for controlling the cosine term i...

متن کامل

Spatio-temporal variation of wheat and silage maize water requirement using CGMS model

The Crop Growth Monitoring System (CGMS) has been applied for spatial biophysical resource analysis of Borkhar & Meymeh district in Esfahan province, Iran. The potentially suitable area for agriculture in the district has been divided into 128 homogeneous land units in terms of soil (physical characteristics), weather and administrative unit. Crop parameters required in the WOFOST simulatio...

متن کامل

Fisher Information Based Meteorological Factors Introduction and Features Selection for Short-Term Load Forecasting

Weather information is an important factor in short-term load forecasting (STLF). However, for a long time, more importance has always been attached to forecasting models instead of other processes such as the introduction of weather factors or feature selection for STLF. The main aim of this paper is to develop a novel methodology based on Fisher information for meteorological variables introd...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016